Novel 2-Amino-3-pyrazol-5-yl-pyridines from the Reaction of 5-Chloro-1,8-naphthyridines with Hydrazine Hydrate and their Cyclisation to Pyrazolo[1,5-c]pyrido[3,2-e]pyrimidines, a New Ring System

By R. A. Bowie

(Imperial Chemical Industries Limited, Pharmaceuticals Division, Alderley Park, Macclesfield, Cheshire SK10 4TG)

Summary 5-Chloro-1,8-naphthyridines react with hydrazine hydrate to give 2-amino-3-pyrazol-5-yl-pyridines, which can form pyrazolo [1,5-c] pyrido[3,2-e]pyrimidines with triethyl ortho-esters.

When 5-chloro-1,8-naphthyridines (Ia and Ib) are treated with an excess of hydrazine hydrate in a sealed tube at $120-150^{\circ}$ for 5 h , 2 -amino- 3 -pyrazol- 5 -yl-pyridines (IIa ind IIb) are obtained respectively. The isomeric 2-methyland 2,4-dimethyl-5-hydrazino-1,8-naphthyridines (IVa and (Vb) were synthesised and shown to be different from (IIa) and (IIb) respectively.

The evidence from n.m.r. spectroscopy is shown in the Table. The coupling constants $J_{3,4}$ for the pyrazolopyridines (IIa) and IIb) are found to be similar to those of (III) and other known mono-substituted pyrazoles ${ }^{1}$ ($J_{3,4} 1.7-2 \cdot 3 \mathrm{~Hz}$) but different to the coupling constants $J_{6}, 7$ for naphthyridines.

Treatment of these novel pyrazolo-pyridines (IIa and IIb) with triethyl ortho-esters in ethanol under reflux give pyrazolo[1,5-c]pyrido[3,2-e]pyrimidines (V a-d)-a hitherto unreported ring system. The elemental analyses and spectral data are consistent with the suggested structures (V a-d).

(I)
(a) $R=H$
(b) $R=M e$

(II)
(a) $R=H$
(b) $R=M e$

(a) $R^{1}=H, R^{2}=H$
(b) $R^{1}=M e, R^{2}=H$
(c) $R^{1}=H, R^{2}=M e$
(d) $R^{1}=M e, R^{2}=M e$
${ }^{1}$ J. Elguero, R. Jacquier, and H. C. N. Tien Duc, Bull. Soc. chim. France, 1966, 3727.

